• Français
  • English

Élise Chenot PhD thesis

 

Paleoclimatic and paleoceanographic changes during the Campanian – mineralogical and geochemical approach

Defended on the 28th May 2018

Funding: ministerial research allocation

Supervisor: Jean-François Deconinck; cosupervisor: Emmanuelle Pucéat

Started in October 2014

 

Abstract

The origin of the Late Cretaceous (~100 – 65 Ma) global cooling is not yet well understood. The evolution of sea surface and bottom temperatures shows an acceleration of the cooling during the Campanian stage (~84 Ma). The main goal of this study was to explore the processes driving this cooling, focusing on Campanian sediments from the Tethyan, Boreal and Atlantic realms.

The clay mineralogical assemblages of several (hemi)pelagic sites, selected along a S-N transect, from 5° to 45°N, reveal an increase in continental weathering during the Campanian, expressed by enhanced kaolinite inputs. The detrital input related to the uplift of new continental areas seems to evolve from south to north. This propagation is likely linked to the anticlockwise rotation of the African plate and the progressive closure to the Tethys Ocean. Enhanced continental weathering seems also linked to more hydrolysing conditions in the studied regions, resulting in bauxite development.

The Campanian stage was characterised by major palaeogeographic changes, such as the widening of south and north Atlantic oceans and the closure of the Tethyan realm. The motion of continental plates is likely responsible for a major reorganization of the oceanic currents. During the Late Cretaceous, the so called “Tethyan Circumglobal Current” (TCC) current flows latitudinally through the Tethyan Ocean to the Caribbean gateway, from east to west, and seems to intensify during the Campanian stage. Thus, we tried to reconstruct the evolution of the deep oceanic circulation within the TCC pathway during the Late Cretaceous, based on a geochemical approach using the neodymium (Nd) isotopes. The evolution of εsub>Nd of local bottom water of three (hemi)pelagic sites located on the possible pathway of this current has been analysed on the carbonate fraction of the sediments : the Shahneshin section located at the main entrance of the Tethyan passage (Zagros basin, Iran), the Gubbio – la Bottaccione section located at the centre of the Tethys (Umbria – Marche basin, Italy) ocean and the DSDP site 146 located in the Caribbean gateway (Venezuela basin, Caribbean sea). The εsub>Nd of the insoluble fraction of the sediments was analysed, in order to discuss of the role of local exchanges between water and sediments. The evolution of the deep water εsub>Nd along with that of residue εsub>Nd and clay mineralogical assemblages shows that geochemical and mineralogical signatures of Shahneshin and 146 sites are largely controlled by local processes (tectonic and volcanism), although an increased input of radiogenic Pacific waters may be detected at Shahneshin during the Campanian. The Gubbio site seems to be influenced by atlantic waters entering western Tethys, suggesting that the TCC did not reach the base of the water column at this site.

 

Jury

Thierry Adatte – examiner
François Baudin – examiner
Jean-François Deconinck – supervisor
Marc Derafelis – referee
Nicolas Thibault – examiner
Emmanuelle Pucéat – co-supervisor
Johan Yans – referee

extrait:
lien_externe:
kc_data:
a:8:{i:0;s:0:"";s:4:"mode";s:0:"";s:3:"css";s:0:"";s:9:"max_width";s:0:"";s:7:"classes";s:0:"";s:9:"thumbnail";s:0:"";s:9:"collapsed";s:0:"";s:9:"optimized";s:0:"";}
kc_raw_content:

 

Paleoclimatic and paleoceanographic changes during the Campanian - mineralogical and geochemical approach

Defended on the 28th May 2018

Funding: ministerial research allocation

Supervisor: Jean-François Deconinck; cosupervisor: Emmanuelle Pucéat

Started in October 2014

 

Abstract

The origin of the Late Cretaceous (~100 – 65 Ma) global cooling is not yet well understood. The evolution of sea surface and bottom temperatures shows an acceleration of the cooling during the Campanian stage (~84 Ma). The main goal of this study was to explore the processes driving this cooling, focusing on Campanian sediments from the Tethyan, Boreal and Atlantic realms.

The clay mineralogical assemblages of several (hemi)pelagic sites, selected along a S-N transect, from 5° to 45°N, reveal an increase in continental weathering during the Campanian, expressed by enhanced kaolinite inputs. The detrital input related to the uplift of new continental areas seems to evolve from south to north. This propagation is likely linked to the anticlockwise rotation of the African plate and the progressive closure to the Tethys Ocean. Enhanced continental weathering seems also linked to more hydrolysing conditions in the studied regions, resulting in bauxite development.

The Campanian stage was characterised by major palaeogeographic changes, such as the widening of south and north Atlantic oceans and the closure of the Tethyan realm. The motion of continental plates is likely responsible for a major reorganization of the oceanic currents. During the Late Cretaceous, the so called “Tethyan Circumglobal Current” (TCC) current flows latitudinally through the Tethyan Ocean to the Caribbean gateway, from east to west, and seems to intensify during the Campanian stage. Thus, we tried to reconstruct the evolution of the deep oceanic circulation within the TCC pathway during the Late Cretaceous, based on a geochemical approach using the neodymium (Nd) isotopes. The evolution of εsub>Nd of local bottom water of three (hemi)pelagic sites located on the possible pathway of this current has been analysed on the carbonate fraction of the sediments : the Shahneshin section located at the main entrance of the Tethyan passage (Zagros basin, Iran), the Gubbio – la Bottaccione section located at the centre of the Tethys (Umbria – Marche basin, Italy) ocean and the DSDP site 146 located in the Caribbean gateway (Venezuela basin, Caribbean sea). The εsub>Nd of the insoluble fraction of the sediments was analysed, in order to discuss of the role of local exchanges between water and sediments. The evolution of the deep water εsub>Nd along with that of residue εsub>Nd and clay mineralogical assemblages shows that geochemical and mineralogical signatures of Shahneshin and 146 sites are largely controlled by local processes (tectonic and volcanism), although an increased input of radiogenic Pacific waters may be detected at Shahneshin during the Campanian. The Gubbio site seems to be influenced by atlantic waters entering western Tethys, suggesting that the TCC did not reach the base of the water column at this site.

Jury

Thierry Adatte – examiner
François Baudin – examiner
Jean-François Deconinck – supervisor
Marc Derafelis – referee
Nicolas Thibault – examiner
Emmanuelle Pucéat – co-supervisor
Johan Yans – referee

Log In

Create an account